
INTEGRATION OF AN INTERNAL OPTIMIZATION  
MODULE WITHIN ENERGYPLUS  

G. Zhou1, P. Ihm1, M. Krarti1, S. Liu2 and G.P. Henze2

1Civil, Environmental, and Architectural Engineering, University of Colorado 
2Architectural Engineering, University of Nebraska-Lincoln 

ABSTRACT
An optimization module is developed and incorporated 
within EnergyPlus. As an application of the 
optimization module, improved controls are determined 
for building passive thermal energy storage inventory. 
The paper describes the implementation of the 
optimization module within EnergyPlus. Moreover, the 
paper presents results of a comparative analysis to 
assess the performance of various optimization 
algorithms evaluated as part of the implementation of 
the internal optimization module within EnergyPlus.
Parametric analyses are carried out to evaluate the 
effectiveness of the optimization module integrated 
with EnergyPlus in harnessing the building thermal 
mass to reduce either energy use or peak-demand 
associated with cooling a prototypical office building 
under various operating conditions. Selected results of 
the parametric analyses are presented in this paper. In 
particular, the performance of the internal optimization 
module is compared against that of GenOpt, an external 
optimization system. The study reveals that the Nelder-
Mead simplex method provides an appropriate 
compromise between computational efficiency, 
robustness, and accuracy of the optimal solution.  

INTRODUCTION
EnergyPlus is a new generation of building energy 
simulation software developed by the U.S. Department 
of Energy (DOE, 2002). The first version 1.0.0 was 
released in April 2001 and the latest version 1.0.3 was 
released in November 2002. The next major release is 
scheduled to be released March 2003. 
EnergyPlus is built on popular features and capabilities 
of both BLAST and DOE-2 but also includes several 
innovative simulation capabilities such as flexible sub-
hourly time steps, modular HVAC systems, multi-zone 
airflow, thermal comfort, and photovoltaic systems. 
EnergyPlus is expected to be a valuable tool to 
simulate building energy use and study control 

strategies of building mechanical systems to reduce 
both building energy consumption and operating costs. 
Like other whole-building simulation programs, 
EnergyPlus simulates building energy flows based on 
an input file containing a detailed description of 
building construction, HVAC systems and their 
controls. Typically, the user defines building operation 
and control strategies based on experience or existing 
operating schemes. Often, these user-defined controls 
are ad hoc and hence do not provide optimal operating 
strategies, resulting in higher than necessary energy use 
and/or energy cost. To broaden the applications of 
EnergyPlus, an internal optimization module is 
developed and integrated so that EnergyPlus can be 
used to find an optimal control strategy for operating 
HVAC systems.  
In particular, this paper describes and evaluates an 
approach to implement suitable optimization routines 
within EnergyPlus in order to cost-effectively utilize 
passive building thermal energy storage. However, the 
developed optimization module could be applied to 
better control any energy system within a building. 

OVERVIEW OF ENERGYPLUS
In order to better understand the integration of 
optimization routines, it is valuable to outline the basic 
structure of EnergyPlus to calculate building cooling 
and heating loads and simulate the operation of HVAC 
systems and central plant equipment. Refer to DOE 
(2002) for detailed information on EnergyPlus. Refer to 
Appendix A for description of the basic structure and 
building control strategies of EnergyPlus.

OPTIMIZATION ALGORITHMS
Numerous optimization techniques can be considered 
for the implementation within EnergyPlus to carry out 
cost or energy minimization. Each technique has its 
advantages and disadvantages depending on the 
building system to be controlled. In particular, only 
selected optimization techniques are suitable for 
controlling building passive or active thermal energy 
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storage (TES) systems due to several constraints 
including: 
1. The interactions between TES systems and other 

building HVAC systems are rather complex. In 
particular, no simple and differentiable relationship 
can be generally established between TES control 
variables (such as indoor air temperature setpoints 
or charge/discharge levels) and building energy 
consumption. Therefore, the optimization objective 
function is not generally differentiable. Given this 
characteristic, optimization techniques that require 
as input parameters the derivatives of the objective 
function are not suitable for TES optimization 
problems.   

2. Acceptable control variables for the optimization 
of TES systems are within simple bounds such as 
the upper/lower limits of storage levels for active 
TES systems and upper/lower limits of zone air 
temperatures for passive TES systems. Therefore, 
suitable optimization algorithms have to account 
for bound constraints in their search. 
Unconstrained optimization approaches are 
therefore not appropriate for TES optimization 
problems. 

3. The input/output formatting and the structure of 
the optimization algorithms should be flexible 
enough to be compatible with EnergyPlus. Most of 
the commercially available optimization programs 
cannot be easily implemented within EnergyPlus
because of their rigid structure. It should be noted 
that commercially available optimization software 
could be interfaced with EnergyPlus using an 
external optimization approach such as GenOpt.

4. Given these constrains and the accessibility of 
source codes, the optimization algorithms 
considered for this study are based on the 
following methods:  

Nelder-Mead Simplex 
Quasi-Newton as proposed by Broyden-
Fletcher-Golfarb-Shanno (BFGS)
Simulated Annealing 
Population-Based Approach 

A brief discussion of each optimization method as well 
as their associated algorithms is provided in Appendix 
B.

IMPLEMENTAION OF AN 
OPTIMIZATION ALGORITHIN 
WITHIN ENERGYPLUS v.1.01 
Optimization Algorithm 
As discussed in Section 3, several criteria should be 
considered to select a suitable optimization algorithm 
for implementation within EnergyPlus. For this study, 
four optimization algorithms are implemented and 
evaluated. The implementation procedure for all the 
optimization algorithms is similar. To illustrate the 
implementation procedure within EnergyPlus, an 
algorithm using the Nelder-Mead simplex method is 
considered in this section. The algorithm is extracted 
from the ISML library and is called DBCPOL program.  

ManageSimulation subroutine 
As described in Section 3, HVAC systems in 
EnergyPlus can be controlled by utilizing schedules. 
Some modifications of internal subroutines are required 
in order to implement an optimization algorithm within 
EnergyPlus as discussed below.  
First, subroutine ManageSimulation is modified to 
separate the initialization tasks from the iterative 
calculations. This separation is simply achieved by 
code after the line “BeginFullSimFlag = True”,
indicating the completion of initialization, from the 
subroutine ManageSimulation to another subroutine 
EnvironSimulation where the environment loop 
simulation starts.  
Also, in order to keep the flexibility of running 
EnergyPlus with and without the optimization module, 
a new do-optimization-or-not field is added into section 
Run Control in the input file to allow the user to select 
the simulation type. If the input value for the do-
optimization-or-not field is ‘YES’, then the newly 
created flag DoOptimization is set to “true” and 
EnergyPlus with the integrated optimization algorithm 
is used for the simulation. Otherwise, standard 
EnergyPlus simulation is executed without any 
optimization. 
In subroutine ManageSimulation, instead of starting the 
environment simulation directly by calling 
EnvironSimulation, the simulation can be directed into 
two newly added subroutines: 
ManageNormalEnergyPlus or 
ManageStdOptimEnergyPlus depending on the value of 
the flag DoOptimization. If DoOptimization is ‘false’, 
ManageNormalEnergyPlus is initiated by calling 
directly EnvironSimulation. Otherwise, 
ManageStdOptimEnergyPlus is initiated by first calling 
another initialization subroutine, 
ProcessOptimizationInput, to obtain input values 
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needed by the optimization subroutine, BCPOL. Then, 
the subroutine BCPOL is called within EnergyPlus to 
start the optimization process. In this process, the 
EnvironSimulation subroutine determines the objective 
function. Using the BCPOL algorithm, several 
iterations are typically required to determine the 
optimal values of the control variables. For each 
iteration, BCPOL updates the values of the control 
variables and recalculates the objective function by 
calling the EnvironSimulation subroutine (indirectly). 
After BCPOL finds the optimal control variable values, 
EnvironSimulation subroutine is called one more time 
and the output values are reported. 

Input Parameters for the Optimization 
subroutine 
The BCPOL algorithm requires eight input variables 
and provides two output variables as described in 
Section 4.1. These input and output variables are 
defined in the module DataOptimization, a global data 
module that can be accessed by other modules. The 
defined variables are used by DBCPOL routine as 
follows: 

CALL DBCPOL (FCN, NumVariables, Guess, 
IBTYPE, LowerLimit, UpperLimit, Tolerance, 
MaxRunningNum, OptimumX, OptimumValue) 

The values for the input variables are obtained by 
calling subroutine ProcessOptimizationInput in file
ScheduleManager. In order for the BCPOL to know 
which control variables need to be optimized, a new 
section named Optimization:Schedule is created in the 
input file, which has the format shown below. 

OPTIMIZATION: SCHEDULE, 
  A1,      \field OptimizationScheduleName  
      \Required-field 
              \Type alpha 
 A2,       \field Guess Schedule                                                                              
    \Required-field 
              \Type object-list 
              \Object-list ScheduleNames 
  A3,      \field Lower Limit Schedule 
             \Required-field 
             \Type object-list 
          \Object-list ScheduleNames 
  A4;  \field Upper Limit Schedule 
         \Required-field 
         \Type object-list 
        \Object-list ScheduleNames 

Each control variable to be optimized should have a 
corresponding Optimization:Schedule section in the 
input file. Field A1 is the name of the control variable 
schedule defined in the input file. Field A2 is the name 
of the schedule that provides guess values of the 
control variables. Fields A3 and A4 are the names of 
the schedules that provide the lower and upper bounds 
of the control variables, respectively. The construction 
of this section corresponds to the 
OptimizationScheduleData data type defined in a newly 
added global data file DataOptimization. In the newly 
added ProcessOptimizationInput subroutine, the 
schedule indices of these schedules in the 
Optimization:Schedule sections are stored in the array 
OptimizationSchedule whose format is defined as data 
type OptimizationScheduleData. Since EnergyPlus
already features routines that can retrieve the schedule 
value by the schedule index, it is straightforward to 
obtain values for all schedules defined in the 
OptimizationSchedule array. 
Hence, once the schedule names of the control 
variables are read into OptimizationSchedule, it is easy 
to get their values and store them in arrays that serve as 
input for the BCPOL algorithm by using subroutines 
such as GetScheduleIndex and 
GetCurrentScheduleValue. Therefore, in subroutine 
ProcessOptimizationInput, arrays for Guess,
LowerLimit, UpperLimit, OptimumX are allocated 
according to the number of control variables that need 
to be optimized, and the schedule values of these 
control variables are stored in Guess, LowerLimit, and 
UpperLimit sequentially. The remaining input 
parameters for the BCPOL algorithm include 
NumOfVariables, Tolerance, IBTYPE, 
MaxRunningNum are also assigned values by calling 
ProcessOptimizationInput.
Finally, other subroutines are added or modified within 
EnergyPlus to complete the implementation of an 
internal optimization module including: 

BCPOL algorithm calls subroutine FCN to be 
called by BCPOL to calculate the objective 
function. This subroutine is located in the 
SimulationManagerFile.
An economical module calculates the total 
electrical utility costs including demand and 
energy charges. The economical is located in the 
EnvironSimulation. 
A new section is added to allow more flexibility in 
the selection of the objective function; the user can 
choose between energy cost only, demand cost 
only, or total cost. This section is processed in 
ProcessOptimizationInput and the value is stored 
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in a variable called OptimizationCost defined in 
DataOptimization as shown below. 

OPTIMIZATION:COST, 
N1;        \field Optimization Cost 

     \Type choice 
     \Key 1 !–energy cost based 
     \Key 2 !–demand cost based  
      \Key 3 !–total cost based 

Output Variables  
With standard EnergyPlus, the environment simulation 
is run only once. However, EnergyPlus with an internal 
optimization module requires several simulation 
iterations to find the optimal solution. Without 
changing reporting features, EnergyPlus would provide 
lengthy output reports for all the simulation iterations. 
To eliminate any intermediate and undesirable output 
reports, a variable EndOptimizationFlag is defined In 
DataOptimization. This variable is set to “false” until 
the optimization is done. Only before the final 
simulation run, EndOptimizationFlag is set to “true”. 
The output reporting for the standard EnergyPlus (i.e., 
without the optimization module) is controlled solely 
by DoOutputReporting variable. In the modified 
EnergyPlus (i.e., with the optimization module), both 
DoOutputReporting and EndOptimizationFlag
variables control the output reporting.  

Thermal History 
In order for algorithm BCPOL to efficiently call 
subroutine EnvironSimulation to perform several 
simulations, other modifications are introduced in 
EnergyPlus related to the counting of environments and 
to tracking the building’s thermal history: 
EnvironSimulation uses subroutine 
GetNextEnvironment to assess whether or not there is 
another environment available for simulation. The 
number of environments is counted from the input file 
during initialization of EnergyPlus, i.e., before calling 
EnvironSimulation using an internal counter. This 
internal counter increases by one every time 
GetNextEnvironment subroutine is called. In order for 
BCPOL algorithm to call EnvironSimulation as many 
times as needed, the environment counter in 
GetNextEnvironment subroutine is reset after each 
EnvironSimulation iteration. 
When calling EnvironSimulation before the beginning 
of any simulation, EnergyPlus executes a “warm-up” 
period to initialize and determine the actual thermal 
history for the building thermal zones and the HVAC 
systems. This warm-up period is determined starting 
from an arbitrary thermal history. Then, by repeatedly 

running the first day of that environment until the 
thermal history related variables converge, the warm-
up period is completed and the thermal history at the 
start of the first timestep of that environment is found. 
Then, based on this initial thermal history, the 
simulation starts. Without modifying the warm-up 
period input, the warm-up period always uses the same 
input as the first day of that environment. With an 
internal optimization module, this thermal history 
setting in EnergyPlus is incorrect and has to be 
modified. Indeed, the BCPOL algorithm changes values 
for various control variables for a given environment 
during each iteration. As a consequence, the warm-up 
period and thermal history change according to the 
control variable values set at each iteration. However, 
the actual thermal history at the beginning of the 
environment under investigation should not be changed 
using future operation strategies but should only 
depend on past operation conditions. Thus, instead of 
using the characteristics of the “first day” of an 
environment as input variables for the warm-up period, 
the characteristics of “yesterday” should be used 
instead. After the warm-up period is complete, the 
thermal history at the start of the first timestep of the 
environment should be recorded and should not be 
changed later. The calculation of the objective function 
values in each iteration of BCPOL should be based on 
this same starting thermal history.  
To be able to record the thermal history at the end of 
the warm-up period and upload the thermal history at 
the start of the actual simulation, variables that store 
building and systems related thermal histories need to 
be identified and subroutines that record and update 
thermal history values are needed. Since in the released 
EnergyPlus documents it is not revealed which 
variables store thermal history, the identification of 
these thermal history related variables was conducted 
by trial-and-error. File ThermalHistoryManager is 
added to EnergyPlus, which includes public 
subroutines that record and update thermal histories, 
i.e., RecHistoryValues and UpdateHistoryValues.
Since in EnergyPlus there is already a logical variable, 
WarmUpFlag, marking the beginning and the end of 
the warm-up period, it is easy to record the thermal 
history after the warm-up period is completed and 
upload recorded thermal history at the start of the first 
timestep. Code recording and updating thermal 
histories are added in the timestep loop of 
EnvrionSimulation.
To ensure that the warm-up process is based on 
“yesterday’s” weather data, subroutines in 
WeatherManager are modified. Unlike other input 
variables in EnergyPlus, weather data are read day-by-
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day instead of timestep-by-timestep. Before the 
beginning of each day, the weather data are read into a 
global variable Tomorrow by calling 
ReadWeatherForDay subroutine. At the beginning of 
that day, global variable Today is updated by 
Tomorrow by calling UpdateWeatherForDay
subroutine. This process is accomplished in subroutine 
InitializeWeather in WeatherManager. Both Today and 
Tomorrow variables store weather data such as outside 
dry bulb/dew point temperatures, pressure, solar 
radiation, wind speed and direction. For standard 
EnergyPlus, the warm-up period reads the weather 
information of the first day of the environment. 
EnergyPlus with an internal optimization module reads 
instead weather data for the day before the first day of 
the environment. Also, the date is changed to one day 
before the first day so that the building schedules are 
those of yesterday. 

DISCUSSION SELECTED RESULTS 
In this section, selected simulation results obtained 
from EnergyPlus with an internal optimization module 
are presented. The main focus of the analysis is to 
determine the best control strategies that utilize passive 
building thermal energy storage in a typical office 
building in order to reduce electrical energy charges, 
electrical demand charges, or total electricity charges. 
First, a brief outline of the building model used 
throughout the simulation analysis is provided. Then, 
sample of optimization results for passive TES system 
is illustrated. Finally, a comparative analysis of the 
performance of optimization algorithms is presented. 

Building Model 
A 3-floor office building model is used to evaluate the 
performance of various optimization algorithms within 
EnergyPlus. Figure 1 shows an isometric view of the 
office building. 

Figure 1: Isometric view of the office building model

Each floor of the building is modeled with five zones, 
i.e. east (24m x 12m), south (48m x 6m), west (24m x 
12m), north (48m x 6m) and central zone (24m x 24 m). 
The total building floor area is 5,184 m2. Two 
construction types are considered in the analysis: 
heavy-mass (643 kg/m2) and light-mass (183 kg/m2). 
The building is occupied 8:00-19:00 and unoccupied 
for the rest of the day. The average people density is set 
at 0.08 person/m2 for all zones. The density load 
attributed to both lighting and equipment is 31.25 
W/m2. Two electrical utility rates, i.e. weak rates and 
strong rates, are considered in the analysis. In weak 
rates, the on-peak and off-peak energy costs are 0.2 
$/KWH and 0.1 $/KWH respectively and demand costs 
are 10 $/KW and 5$/KW respectively. In heavy rates, 
the energy costs are 0.2 $/KWH and 0.05 $/KWH and 
demand costs are 10 $/KW and zero $/KW respectively. 
The simulation runs are performed either for Jan 17th or 
for July 20th using weather data of Phoenix, AZ. 

Sample of EnergyPlus based Optimization 
Controls 
Figure 2 shows sample results, obtained by EnergyPlus
with an internal optimization module, to better control 
zone cooling setpoints in order to reduce total 
electricity charges (using the strong-incentive utility 
rate structure) for the 15-zone office building during 
July 21 in Phoenix, AZ. EnergyPlus predictions for 
zone cooling setpoints, average zone air temperatures, 
as well as the chiller power consumption are illustrated 
in Figure 3 for both conventional control (i.e., night set-
up control) and optimal control (using pre-cooling 
strategies). In the simulation, a temperature economizer 
is assumed for the operation of the HVAC systems. 
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Figure 2: Optimal control of passive building energy 
thermal storage for the15-zone office building using 

EnergyPlus
From Figure 2, it can be observed that the optimal 
solution decides to precool the building during 
nighttime. During the day, the cooled building structure 
absorbs zone internal gains resulting in reduced cooling 
load and chiller power consumption compared to the 
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conventional control. For the optimal control, the total 
chiller power consumption is 554 kWh with a peak of 
56.7 kW occurring at 23:00. The building total 
electrical consumption is 1582 kWh with a peak of 
139.9 kW occurring at 8:00. Compared to the 
conventional control, applying optimal control can 
achieve total cost savings of 19.6% and a cooling cost 
savings of 33.0%. 

Comparative analysis of the optimization 
algorithms
The performance of four optimization algorithms, i.e. 
BCPOL, BCONF, SIMANL, and OptQuest is 
compared for various operating and design conditions 
including the effects of building mass, electrical utility 
rate, and weather conditions. Table 1 lists selected the 
results of the comparative analysis. Figure 3 illustrates 
typical performance of the four optimization algorithms. 
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Figure 3: Temperature and electricity consumption 
profiles obtained using four optimization algorithms 

integrated within EnergyPlus to better utilize building 
thermal mass

From Figure 3, it can be observed that all of the 
optimization algorithms provide rather non-smooth 
solutions as indicated by the ragged profiles of the zone 
air temperature and chiller energy use. It is most likely 
that most of the optimization algorithms find local 
optima instead of the global optimum due to the 
complexity of the optimization problem. 
As indicated in Table 1, SIMANL algorithm requires a 
significant CPU time to search for the optimal solution. 
Indeed, to find the optimal temperature setpoints, 
SIMANL needed more than 50 hours and 31201 
function evaluations. Although SIMANL achieved the 
highest savings, the long simulation time makes it 
unsuitable for most optimization problems.   
Similarly, the OptQuest algorithm requires long CPU 
times. In order to get acceptable optimal solutions, 
approximately 5,000 iterations needed. The average 
CPU time OptQuest required in this scenario is about 6 
hours. Comparing the total cost savings summarized in 

Table 1 and obtained by various optimization 
algorithms, it can be observed that OptQuest achieves 
0.5-7% higher savings than BCPOL and 0.7%-11.4% 
more savings than BCONF. Although it may provide 
better optimal solutions, OptQuest is not suitable for 
real-time optimal control problems due to the large 
computational efforts required.  
Finally, the performance of BCPOL and BCONF 
algorithms is comparable and both require similar CPU 
times and iterations to find optimal solutions. On 
average, BCPOL needs 1,053 of iterations and 1 hour 
27 minutes of CPU time while BCONF requires 857 
iterations and 57 minutes of CPU time. The differences 
for the optimal objective function values between the 
two algorithms are rather small (in the range 0.1-7%). 
However, BCONF is not as robust as BCPOL due to 
the fact gradients for the objective function are needed 
by the quasi-Newton technique that BCONF utilizes to 
search for the optimal solutions. Considering both 
robustness and computational efficiency, it appears that 
the BCPOL algorithm represents the best choice among 
the four optimization algorithms considered in the 
comparative analysis.  

Comparison with an external optimization 
module, GenOpt
GenOpt® is a generic optimization program developed 
by the Simulation Research Group at the Lawrence 
Berkeley National Laboratory. It can be applied to 
optimize any arbitrary objective function that can be 
estimated by an external simulation program such as 
EnergyPlus. There are currently two optimization 
methods integrated within GenOpt that the user can 
select from. For fair comparison, the performance of 
the Nelder-Mead simplex method of GenOpt is 
evaluated against the BCPOL algorithm integrated 
within EnergyPlus. Table 2 summarizes the 
comparative analysis of the performance of both 
GenOpt (externally connected to EnergyPlus) and 
BCPOL (internally integrated within EnergyPlus) in 
determining the best control strategy for passive 
building storage utilization to minimize total electricity 
costs for the 15-zone office building located in Phoenix 
AZ, during July 21. Two electrical utility rate structures 
(weak-incentive vs. strong-incentive) and tow 
construction types (heavy vs. light) are considered in 
the comparative analysis. 
From Table 2, it can be noted that the Simplex method 
of GenOpt tends to get easily trapped in local minima. 
For the weak-incentive rate, it cannot find a solution 
that is better than the base case, which is night set-back 
control. This is due to the intentional reduction in the 
number of iterations that the Nelder-Mead method is 
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allowed to perform in GenOpt to search for the optimal 
solution. This limit on the number of iterations is set to 
reduce the CPU time for the search.  
Further, it can be observed that although the Simplex 
method in GenOpt requires fewer function evaluations 
to get the “best solution”, it takes significantly longer in 
terms of CPU time (on average 6 hours). This low 
computational efficiency is due to two facts. First, 
communication between GenOpt (an external 
optimization module) and EnergyPlus occurs through 
file transfer that requires more CPU time than that 
needed by an optimization module integrated within 
EnergyPlus. Second, due to the structure of GenOpt,
EnergyPlus is called at every iteration (of the search 
process) with subsequent CPU time-consuming of 
warm-up period and initialization of building energy 
systems.  
Based on the comparative analysis results, it is clear 
that an internal optimization module performs better 
than an external optimization module in cases when 
high computational efficiency is required such as real-
time optimal control. 

SUMMARY AND CONCLUSIONS 
A description of the implementation of an optimization 
algorithm within EnergyPlus is presented in this paper. 
Several parametric analyses have been carried out 
using EnergyPlus with an internal optimization module 
to determine the best control strategies for passive 
building thermal storage inventory in buildings. The 
impact of the optimization technique is evaluated under 
various operating and design conditions. Four 
optimization techniques are considered in the 
evaluation analysis including: 

Nelder-Mead Simplex 
Quasi-Newton as proposed by Broyden-Fletcher-
Golfarb-Shanno (BFGS) 
Simulated Annealing 
Population-Based Approach 

Considering both robustness and computational 
efficiency of the optimization routines, the BCPOL 
algorithm using the Nelder-Mead simplex method was 
found to be the best choice for the specific problem of 
optimizing building passive TES systems. Comparing 
external and internal implementations for the 
optimization module, it was found that the internal 
implementation provides significantly more efficient 
option.  
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Table 1

Comparison of the performance of four optimization algorithms integrated within EnergyPlus.

NO Opt.
Costs Costs Savings # Iter. Time Costs Savings # Iter. Time Costs Savings # Iter. TimeCosts Savings # Iter. Time

Total Cost ($) 310.31 249.62 -19.6% 239.66 -22.8% 241.92 -22.0% 235.63 -24.1%
Cooling Cost ($) 183.64 122.95 -33.0% 112.98 -38.5% 115.25 -37.2% 108.96 -40.7%
Chiller Elec. Cost ($) 130.81 71.73 -45.2% 57.01 -56.4% 61.77 -52.8% 57.78 -55.8%
Total Cost ($) 369.38 378.23 2.4% 380.99 3.1% 352.77 -4.5%
Cooling Cost ($) 215.48 232.89 8.1% 235.64 9.4% 207.42 -3.7%
Chiller Elec. Cost ($) 152.29 147.22 -3.3% 145.18 -4.7% 134.65 -11.6%
Total Cost ($) 317.43 268.49 -15.4% 265.20 -16.5% 262.37 -17.3%
Cooling Cost ($) 190.75 141.82 -25.7% 138.52 -27.4% 135.69 -28.9%
Chiller Elec. Cost ($) 136.63 88.00 -35.6% 79.69 -41.7% 82.08 -39.9%
Total Cost ($) 376.24 364.46 -3.1% 366.11 -2.7% 359.93 -4.3%
Cooling Cost ($) 222.34 225.94 1.6% 229.47 3.2% 214.58 -3.5%
Chiller Elec. Cost ($) 157.82 143.39 -9.1% 146.65 -7.1% 142.20 -9.9%
Total Cost ($) 164.31 139.06 -15.4% 154.45 -6.0% 135.68 -17.4%
Cooling Cost ($) 37.64 12.39 -67.1% 27.77 -26.2% 9.00 -76.1%
Chiller Elec. Cost ($) 2.97 0.13 -95.6% 2.51 -15.5% 0.00 -100.0%
Total Cost ($) 196.59 181.11 -7.9% 190.75 -3.0% 178.45 -9.2%
Cooling Cost ($) 43.92 28.95 -34.1% 38.16 -13.1% 28.57 -34.9%
Chiller Elec. Cost ($) 2.97 3.21 8.1% 2.65 -10.8% 0.00 -100.0%
Total Cost ($) 166.47 140.35 -15.7% 144.23 -13.4% 139.63 -16.1%
Cooling Cost ($) 39.79 13.67 -65.6% 17.56 -55.9% 12.95 -67.5%
Chiller Elec. Cost ($) 4.40 0.02 -99.5% 0.31 -93.0% 0.00 -100.0%
Total Cost ($) 196.23 181.59 -7.5% 196.40 0.1% 180.17 -8.2%
Cooling Cost ($) 44.90 34.17 -23.9% 45.90 2.2% 32.08 -28.5%
Chiller Elec. Cost ($) 4.40 1.78 -59.5% 5.67 28.9% 0.68 -84.5%
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Table 2
Comparison of Internal and External Optimization techniques 

NO Opt.
Costs Costs Savings # Iter. Time Costs Savings # Iter. Time

Total Cost ($) 310.31 249.62 -19.6% 239.66 -22.8%
Cooling Cost ($) 183.64 122.95 -33.0% 112.99 -38.5%
Chiller Elec. Cost ($) 130.81 71.73 -45.2% 58.59 -55.2%
Total Cost ($) 369.38 378.23 2.4% 393.80 6.6%
Cooling Cost ($) 215.48 232.89 8.1% 256.61 19.1%
Chiller Elec. Cost ($) 152.29 147.22 -3.3% 149.96 -1.5%
Total Cost ($) 317.43 268.49 -15.4% 289.77 -8.7%
Cooling Cost ($) 190.75 141.82 -25.7% 172.10 -9.8%
Chiller Elec. Cost ($) 136.63 88.00 -35.6% 103.99 -23.9%
Total Cost ($) 376.24 364.46 -3.1% 385.06 2.3%
Cooling Cost ($) 222.34 225.94 1.6% 241.77 8.7%
Chiller Elec. Cost ($) 157.82 143.39 -9.1% 151.28 -4.1%

BCPOL

Heavy-
Strong-
Summer

1317 2:12

261 3:38

Heavy-
Weak-

Summer
927 1:50

Light-
Strong-
Summer

1214 1:47

GenOpt

466 6:25

580 7:36

466 6:48
Light-
Weak-

Summer
834 1:15

- 1474 -- 1482 -



Appendix A. Introduction of EnergyPlus
Basic Structure of EnergyPlus
EnergyPlus is constructed as “loop-in-loop” structure, 
as illustrated in Figure A-1. When a simulation run is 
initiated with EnergyPlus, the input file is first 
processed and checked for consistency by calling the 
subroutine ProcessInput. The input values are then 
stored in global arrays that can be accessed easily by 
subroutines that are designed to retrieve data from them. 
Then follows the core line of EnergyPlus, i.e., calling 
subroutine ManageSimulation in the 
SimulationManager. Here, an initialization is first 
carried out and then the “loop-in-loop” simulation is 
performed. 
After the initialization, EnergyPlus calculates from 
outside to inside through an environment loop, a day 
loop, an hour loop, and a timestep loop. The term 
“environment” in EnergyPlus can be simply viewed as 
a thermal history concatenated run period. A simulation 
with one run period (for example, from July 20 to 
November 20) has one environment. However, a 
simulation with two run periods (for example, one run 
period from July 20 to August 30 and another run 
period from September 1 to December 5), has two 
environments. By calling subroutine 
GetNextEnvironment in the WeatherManager file, the 
environment loop counts the environments to be 
simulated and initializes the next available environment 
to be simulated by the day loop. Each environment 
contains one or more days. These days are simulated 
sequentially in the day loop. In each day, 24 hours are 
simulated from 1 to 24 in the hour loop. In each hour, a 
timestep loop of up to six timesteps per hour (i.e., 10 
minutes) is allowed. The calculation routines of 
EnergyPlus are performed for each timestep. In 
particular, building zone loads, HVAC system loads, 
heating/cooling plant loads and eventually energy 
consumption are calculated for each timestep. 
In standard EnergyPlus, operating and setpoint 
schedules are provided as fixed values and are not 
modified during the simulation. In EnergyPlus with an 
internal optimization module, schedules can be 
modified by the optimization algorithm. Then, these 
schedules are fed back to EnergyPlus calculation
routines to search for the optimal solution. 

Building Control Strategies in EnergyPlus
EnergyPlus simulates the operation of HVAC systems 
using a set of schedules. In the input file, week 
schedules as well as day schedules are defined for the 
control variables (such as temperature setpoints). For 
simulations with timesteps less than one hour, hourly 

values from the day schedules are used to interpolate 
values for each timestep. At the start of the initial 
timestep, subroutine ProcessScheduleInput is called. 
This subroutine extracts information about all of the 
schedules defined in the input file and stores them in a 
global array, called Schedule. Then, subroutine 
GetCurrentScheduleValue is called to determine the 
schedule values at each timestep. An index for each 
schedule is defined as the sequence number of that 
schedule as stored in the Schedule array. Knowing the 
name of the schedule, the schedule index number of a 
schedule can be retrieved by calling subroutine 
GetScheduleIndex. These schedule-handling 
subroutines provide a convenient procedure to retrieve 
schedule values for any timestep by simply knowing 
the name of the schedule.  
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      Figure A-1:  EnergyPlus v1.01 flowchart 
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Appendix B. Introduction of Optimization 
Algorithms
Nelder-Mead Simplex Method 
This method, developed by Nelder and Mead (1965), is 
a multi-dimensional direct search optimization 
technique that requires only objective functions 
evaluations without derivatives. This characteristic of 
the method makes it suitable for optimization for 
controlling TES systems since it is computationally too 
expensive to estimate derivatives of the objective 
function using EnergyPlus program. An algorithm 
using this method is available in the standard texts on 
numerical recipes. A program based on the Nelder-
Mead simplex method, called BCPOL, is also provided 
in the ISML library.   

Quasi-Newton Method 
The BFGS method, a popular variant of the Quasi-
Newton method, is an optimization method that 
calculates gradients for the objective function (Broyden, 
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; 
Rao, 1996). The BFGS method can handle optimization 
problems subject to simple bounds on the variables 
such as the problem of optimal controls of TES 
systems. The main disadvantage with the BFGS
technique is may reach non-optimal solutions due to 
inaccurate estimates of the objective function gradients. 
An algorithm using the BFGS optimization technique, 
called BCONF, is available in the ISML library.

Simulated Annealing 
The simulated annealing method has been developed 
using the analogy of how metals cool and anneal 
(Belegundu and Chandrupalta, 1999). It can be a useful 
optimization method when a desired global minimum 
is among several other local minima. The primary 
advantage of simulated annealing method is that it can 
avoid undesirable local minima other techniques tend 
to get stuck in. It often converges to a solution that is 
close to the true minimum solution. The main 
disadvantage of the simulated annealing method is that 
it is a slow technique and requires substantial 
computational time. 

Population-Based Method 
This meta-heuristic method is a type of genetic 
algorithm, which harnesses the theory of natural 
selection (i.e., “survival of the fittest”). The algorithm 
used in the context of this article, called OptQuest and 
developed by Glover and Laguna (2000), utilizes 
“tabu” search and scatter search to solve non-smooth 
optimization problems of up to 5,000 variables and 
1,000 constraints. Compared to conventional genetic 

algorithms, OptQuest makes greater use of strategic 
choices and less use of randomization. Where classical 
optimization methods keep track of a single “best 
solution” during a search process, OptQuest maintains 
a set of candidate solutions. Any member of the set can 
lead to a new and better solution, possibly far away 
from the “best solution” found at a given stage of the 
search. Because of this feature, OptQuest is unlikely to 
become “trapped” in a local optimal solution. 
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